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Dusty Decks, Memory Walls
& The Speed of Light

• SW resists change
– Limit new Architectures
– Legacy HW can’t

support new SW
models

– “Chicken & Egg”
• “Memory Wall” is known

problem
• Speed of Light –

fundamental problem

    Outline
• Conventional Memory
• Bottlenecks & Impacts
• Processing-in-Memory
– Chip Designs
– Fabrication
– System Design

• Programming



• Processors connected to the caches…
•Caches connected to the MC…
•MC’s connected to the DIMM Bus…

• Processor & Cache (usually) on same
chip
•MC sometimes on-chip
•MC converts from address to DRAM

commands, reorders requests to
maximize locality, arbitrate
channels/busses

Conventional Memory Hierarchy
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Bottlenecks & Complexity

•Chip/Board boundaries
•Bus/Bank/Row contention
•Coherency
•Complexity
– OOO Memory Queues
– MC command reordering
– Prefetching collisions
– Cache non-determinism

•Results in high latency
– O(100) ns Processor

Cache(s)

Mem. Controller

DIMM

B
us DIMM
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Latency Impact

• Loads often largest category
of instruction
• Tend to dominate latency
• Solutions:
– Caches
– Prefetch
– MC reordering
– OOE
– SW prefetch

•Result?

7%FP

9%Branch

27%Integer

14%Store

43%Load

Mix Latency

Sandia
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Latency Impact

• Low IPC
– CTH: 0.37
– sPPM: 0.5
– LAMMPs: 0.5

• Strong correlation
between cache
misses & low IPC
• Even with aggressive

HW features, memory
dominates

IPC=0.5



PIM: The Solution

• If there is a bottleneck, go
around it!
• Combine processor and

memory
• Processors (logic) cheap,

latency is expensive
• “Single Part” computer
• Simplify
– No/Small caches
– In-order
– Massive Parallelism

Processor Memory

PIM

PIM PIM PIM
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PIMs Conquer All

• Embedded Systems
– eDRAM IP blocks

• Game systems
– CELL, Wii, GameCube,

and Xbox 360, PS2
• Conventional Processors
– Caches often >80%

transistor count
• PIM Projects
– Execube, DIVA, PIMLite,

HTMT, IRAM



Core-Level View

• Processor + Memory
•Communication
– On-chip (PIM-PIM)
– Off-chip (PIM, CPU, More

Memory)
• Processor
– Multithreading?
– Wide ALU
– Sense Amp alignment

•Many fabrication
options…
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Combined Fabrication

• Processor Fab Process + DRAM Fab process
– Logic-in-DRAM: Start with DRAM add metal layers

• Slower DRAM (~5ns), higher density (~1.7 Gb/mm^2)
– DRAM-in-Logic: Start with logic process, add eDRAM

• Fast DRAM (~3ns), but DRAM less dense (2.5:1)
•Complexity
– Add extra steps to fab process -> lower yields?
– DRAM knowledge & processor knowledge different
– Design process different



Stacked Fabrication

•DRAM & Logic components
fabbed separately
•Dies aligned, joined
• Potential “best of both worlds”
•Uncertainties
– Alignment process
– Heat dissipation
– Die-to-die latency?

Processor
DRAM

PIM

LLNL
DRAM
“Cube”



• PNM replaces AMB chip in
conventional FB-DIMM
•Multiple compute cores,

separate “OS/NIC” processor
– Low Latency / High Bandwidth
– Multithreading
– Hardware Synchronization

• Fabrication Simplicity
– DRAM in DRAM process
– Processors in ASIC process

•High efficiency
– More Flops/mm^2

Processor Near Memory (PNM)

DRAM DRAMAMB
FB-DIMM

DRAM DRAMPNM
PNM-DIMM



PNM Sizing

• Goal: Simplicity & Efficiency
• Standard IP Cores
– DMA, SerDes, Mem. Ctrl

• Network
– Router-based switching (Dally)

• Caches
– CACTI

• Processors
– Based on common embedded

cores (ARM, MIPS, etc…)
– Additional area for MT support:

4.3% * log_2(threads) + RF

2 @ 625
Mhz

2 @ 800
Mhz

3 @
1650
Mhz

Compute
Proc.

16 (42)22 (4.72)54 (7.52)Area
mm^2

2 / Core7 / Core8 / CoreThreads

51020Off-chip
Gbps

LittleMediumBig



PNM Performance

• Performance simulation
performed on Sandia &
SPEC apps
•Assume simple (single

issue) MT cores
• Low latency to memory

(~10 ns)
• Threads cover additional

pipeline & memory
latency
•Achieve High IPC (>0.75)



PNM Efficiency

•Comparison against
2Ghz Opteron
• Threads critical to

performance
– Saturated threads: 2.0-

2.5x more flops/mm^2
– 50% threads: 1.6-1.9x
– 1 thread: 1.0-1.4x

• Simple cores, close to
memory can beat much
more complex cores



PIM Systems
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• “Sea of PIMs”
– Single Part, elegant
– Network uncertainty

• “Tree of PIMs”
– Hierarchical interconnection

• Heterogeneous
– Conventional CPU + PIMs in

MPP configuration
– Lower risk

• Pure PIM vs. DRAM-backed PIMs
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Programming: MPI Again?

•Well accepted, understood
(we like to think), legacy
backing
• PIM offers advantages
– Wide word, low latency

improves message matching
– Low-level synchronization

allow message pipelining
•But…
– MPI overhead >> shmem
– Not good at fine-grain

parallelism
– May not be enough



Scatter Gather

• Integer, memory ops dominate
– FP ops (“Real work”) < 10% of Sandia codes
– Several Integer calculations, loads for each FP load
– Several FP loads per FP op.

• Cray-like Scatter/Gather operations
• Pack data into cache lines, use BW better
• Automatic pointer chasing
– Graph / list traversal

• Smart prefetching
– Data collection threads
– Introspection

• Theme: processing is now cheap, data movement is expensive



Offload/Accelerator

•Augment conventional processor with PIM
• “Hide” PIM programming complexity in library,

run-time
• Explicit offload of large “chunks” of computation
• “Master/Slave” model



Massive Multithreading

•Multiple levels of
parallelism
• Proximity to memory

allows fast
synchronization
•Highly applicable to

certain problems
(e.g. Graph)
• Superior scaling &

performance for low
cost



Multiple Thread Models
• Pursue Parallelism at

multiple levels
• Loop-level (OMP, auto)
– Traditionally limited by

expensive processors
– What if procs were

cheap?
• Threadlets
– Threads w/o stacks,

fewer registers
•Migrating threads
– Move the thread to the

data, not the data to the
thread

Slow PIMs

Fast PIMs

1 core

2 cores

4 cores

8 cores

Smaller
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 Conclusions

•Cost of processing dropping, cost of data
movement still high
• Traditional memory hierarchy complex, filled with

bottlenecks – (complex workarounds not working)
• Simplify!
•Can get performance with simple hardware, but

need LOTS of parallelism
•Multiple programming models may provide

parallelism
•Hardware needs programming model support
• Programming models need hardware support



Questions?



What a DRAM DIMM Does

•Matrix of capacitors
•Commands
– RAS/CAS: Row/Col Select
– Select, Write, Auto-refresh

• Leakage -> Refresh
• Latencies
– tRAS: Activate-to-precharge
– tRCD: Row-to-column
– tCAS: Access a column
– tRP: Precharge time

•Row reuse key to performance

O(1024) bits

O(10) bits

Open Row



FBDIMM: The Future?

• Goal: increase speed,
reliability of DRAM
• Point-to-Point Ring (not bus)
• AMB ASIC controls DIMM
– Provide error correction

• Faster serial connections
– More channels
– Lower pin count

• But…
– More memory = more

latency
– Cost?


